Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
iScience ; 27(2): 108877, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318357

ABSTRACT

Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth. Here, we demonstrate that long trimer-boosting intervals, but not long FP immunization intervals, reduce the anti-base response. Additionally, we identify that FP priming before trimer immunization enhances antibody avidity to the Env trimer. We also establish that adjuvants Matrix M and Adjuplex further reduce anti-base responses and increase neutralizing titers. FP priming, long trimer-immunization interval, and an appropriate adjuvant can thus reduce anti-base antibody responses and improve Env-directed vaccine outcomes.

2.
Eur J Case Rep Intern Med ; 11(2): 004283, 2024.
Article in English | MEDLINE | ID: mdl-38352807

ABSTRACT

Ertapenem, a carbapenem-type beta-lactam antibiotic, demonstrates broad-spectrum efficacy against a wide range of Gram-positive and Gram-negative bacteria, including aerobes and anaerobes. Importantly, it demonstrates resistance to virtually all beta-lactamases, including the extended spectrum beta-lactamases (ESBLs). Haematologic complications such as thrombocytosis, haemolysis, anaemia, and neutropenia are infrequent side effects associated with this drug. In this report, we present a rare case of ertapenem-induced thrombocytosis in a 62-year-old female patient who was admitted for a complicated urinary tract infection caused by Escherichia coli. LEARNING POINTS: Ertapenem was identified as the most likely cause of thrombocytosis.Discontinuing ertapenem normalised the platelet count.It is crucial for physicians to identify and address causes of thrombocytosis, particularly when related to medications, to avoid inadvertent complications and to ensure effective patient care.

3.
Nat Commun ; 15(1): 285, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177144

ABSTRACT

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.


Subject(s)
Lassa Fever , Single-Domain Antibodies , Animals , Guinea Pigs , Lassa virus , Antibodies, Viral , Antibodies, Neutralizing
4.
J Virol ; 97(5): e0160422, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37098956

ABSTRACT

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Animals , Guinea Pigs , Mice , HIV Antibodies , Immunoglobulin Isotypes , Vaccination , Peptides , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , env Gene Products, Human Immunodeficiency Virus , HIV Infections/prevention & control
5.
Vaccines (Basel) ; 10(11)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36423012

ABSTRACT

Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the HIV-1 fusion peptide (FP8) as an antigen could prime for broad cross-clade neutralizing responses, that recombinant heavy chain of tetanus toxin (rTTHC) as a carrier protein provided optimal responses, and that choice of crosslinker could impact both antigenicity and immunogenicity. Here, we delve more deeply into the impact of varying the linker between FP8 and rTTHC. In specific, we assessed the physical properties, the antigenicity, and the immunogenicity of conjugates for crosslinkers ranging in spacer-arm length from 1.5 to 95.2 Å, with varying hydrophobicity and crosslinking-functional groups. Conjugates coupled with different degrees of multimerization and peptide-to-rTTHC stoichiometry, but all were well recognized by HIV-fusion-peptide-directed antibodies VRC34.01, VRC34.05, PGT151, and ACS202 except for the conjugate with the longest linker (24-PEGylated SMCC; SM(PEG)24), which had lower affinity for ACS202, as did the conjugate with the shortest linker (succinimidyl iodoacetate; SIA), which also had the lowest peptide-to-rTTHC stoichiometry. Murine immunizations testing seven FP8-rTTHC conjugates elicited fusion-peptide-directed antibody responses, with SIA- and SM(PEG)24-linked conjugates eliciting lower responses than the other five conjugates. After boosting with prefusion-closed envelope trimers from strains BG505 clade A and consensus clade C, trimer-directed antibody-binding responses were lower for the SIA-linked conjugate; elicited neutralizing responses were similar, however, though statistically lower for the SM(PEG)24-linked conjugate, when tested against a strain especially sensitive to fusion-peptide-directed responses. Overall, correlation analyses revealed the immunogenicity of FP8-rTTHC conjugates to be negatively impacted by hydrophilicity and extremes of length or low peptide-carrier stoichiometry, but robust to other linker parameters, with several commonly used crosslinkers yielding statistically indistinguishable serological results.

6.
EClinicalMedicine ; 48: 101477, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35783486

ABSTRACT

Background: Advances in therapeutic drugs have increased life-expectancies for HIV-infected individuals, but the need for an effective vaccine remains. We assessed safety and immunogenicity of HIV-1 vaccine, Trimer 4571 (BG505 DS-SOSIP.664) adjuvanted with aluminum hydroxide (alum), in HIV-negative adults. Methods: We conducted a phase I, randomized, open-label, dose-escalation trial at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Eligible participants were HIV-negative, healthy adults between 18-50 years. Participants were randomized 1:1 to receive Trimer 4571 adjuvanted with 500 mcg alum by either the subcutaneous (SC) or intramuscular (IM) route at weeks 0, 8, and 20 in escalating doses of 100 mcg or 500 mcg. The primary objectives were to evaluate the safety and tolerability of Trimer 4571 with a secondary objective of evaluating vaccine-induced antibody responses. The primary and safety endpoints were evaluated in all participants who received at least one dose of Trimer 4571. Trial results were summarized using descriptive statistics. This trial is registered at ClinicalTrials.gov, NCT03783130. Findings: Between March 7 and September 11, 2019, 16 HIV-negative participants were enrolled, including six (38%) males and ten (62%) females. All participants received three doses of Trimer 4571. Solicited reactogenicity was mild to moderate in severity, with one isolated instance of severe injection site redness (6%) following a third 500 mcg SC administration. The most commonly reported solicited symptoms included mild injection site tenderness in 14 (88%) and mild myalgia in six (38%) participants. The most frequent unsolicited adverse event attributed to vaccination was mild injection site pruritus in six (38%) participants. Vaccine-induced seropositivity occurred in seven (44%) participants and resolved in all but one (6%). No serious adverse events occurred. Trimer 4571-specific binding antibodies were detected in all groups two weeks after regimen completion, primarily focused on the glycan-free trimer base. Neutralizing antibody activity was limited to the 500 mcg dose groups. Interpretation: Trimer 4571 was safe, well tolerated, and immunogenic in this first-in-human trial. While this phase 1 trial is limited in size, our results inform and support further evaluation of prefusion-stabilized HIV-1 envelope trimers as a component of vaccine design strategies to generate broadly neutralizing antibodies against HIV-1. Funding: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

7.
Nat Med ; 27(12): 2234-2245, 2021 12.
Article in English | MEDLINE | ID: mdl-34887575

ABSTRACT

The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Genes, env , Genes, gag , HIV Antibodies/biosynthesis , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , HIV Antibodies/immunology , Immunization, Secondary , Macaca mulatta , Risk Factors , Simian Acquired Immunodeficiency Syndrome/immunology , Vaccines, Synthetic/administration & dosage , mRNA Vaccines/administration & dosage
8.
Mol Autism ; 11(1): 89, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203459

ABSTRACT

BACKGROUND: Deletion or mutations of SHANK3 lead to Phelan-McDermid syndrome and monogenic forms of autism spectrum disorder (ASD). SHANK3 encodes its eponymous scaffolding protein at excitatory glutamatergic synapses. Altered morphology of dendrites and spines in the hippocampus, cerebellum, and striatum have been associated with behavioral impairments in Shank3-deficient animal models. Given the attentional deficit in these animals, our study explored whether deficiency of Shank3 in a rat model alters neuron morphology and synaptic ultrastructure in the medial prefrontal cortex (mPFC). METHODS: We assessed dendrite and spine morphology and spine density in mPFC layer III neurons in Shank3-homozygous knockout (Shank3-KO), heterozygous (Shank3-Het), and wild-type (WT) rats. We used electron microscopy to determine the density of asymmetric synapses in mPFC layer III excitatory neurons in these rats. We measured postsynaptic density (PSD) length, PSD area, and head diameter (HD) of spines at these synapses. RESULTS: Basal dendritic morphology was similar among the three genotypes. Spine density and morphology were comparable, but more thin and mushroom spines had larger head volumes in Shank3-Het compared to WT and Shank3-KO. All three groups had comparable synapse density and PSD length. Spine HD of total and non-perforated synapses in Shank3-Het rats, but not Shank3-KO rats, was significantly larger than in WT rats. The total and non-perforated PSD area was significantly larger in Shank3-Het rats compared to Shank3-KO rats. These findings represent preliminary evidence for synaptic ultrastructural alterations in the mPFC of rats that lack one copy of Shank3 and mimic the heterozygous loss of SHANK3 in Phelan-McDermid syndrome. LIMITATIONS: The Shank3 deletion in the rat model we used does not affect all isoforms of the protein and would only model the effect of mutations resulting in loss of the N-terminus of the protein. Given the higher prevalence of ASD in males, the ultrastructural study focused only on synaptic structure in male Shank3-deficient rats. CONCLUSIONS: We observed increased HD and PSD area in Shank3-Het rats. These observations suggest the occurrence of altered synaptic ultrastructure in this animal model, further pointing to a key role of defective expression of the Shank3 protein in ASD and Phelan-McDermid syndrome.


Subject(s)
Nerve Tissue Proteins/deficiency , Prefrontal Cortex/pathology , Synapses/ultrastructure , Animals , Dendritic Spines/ultrastructure , Female , Heterozygote , Male , Nerve Tissue Proteins/metabolism , Post-Synaptic Density/metabolism , Rats
9.
Cell Rep ; 32(5): 107981, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32755575

ABSTRACT

The HIV fusion peptide (FP) is a promising vaccine target. FP-directed monoclonal antibodies from vaccinated macaques have been identified that neutralize up to ∼60% of HIV strains; these vaccinations, however, have involved ∼1 year with an extended neutralization-eclipse phase without measurable serum neutralization. Here, in 32 macaques, we test seven vaccination regimens, each comprising multiple immunizations of FP-carrier conjugates and HIV envelope (Env) trimers. Comparisons of vaccine regimens reveal FP-carrier conjugates to imprint cross-clade neutralizing responses and a cocktail of FP conjugate and Env trimer to elicit the earliest broad responses. We identify a signature, appearing as early as week 6 and involving the frequency of B cells recognizing both FP and Env trimer, predictive of vaccine-elicited breadth ∼1 year later. Immune monitoring of B cells in response to vaccination can thus enable vaccine insights even in the absence of serum neutralization, here identifying FP imprinting, cocktail approach, and early signature as means to improve FP-directed vaccine responses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , Monitoring, Immunologic , Peptides/immunology , Recombinant Fusion Proteins/immunology , AIDS Vaccines/immunology , Animals , HIV Antigens/immunology , HIV Infections/immunology , Hemocyanins/metabolism , Immunization , Macaca mulatta , Male , Polysaccharides/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/immunology
10.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32295908

ABSTRACT

HIV-1 envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit humoral responses capable of neutralizing HIV-1 strains closely matched in sequence to the immunizing strain. One strategy to increase elicited neutralization breadth involves vaccine priming of immune responses against a target site of vulnerability, followed by vaccine boosting of these responses with prefusion-closed Env trimers. This strategy has succeeded at the fusion peptide (FP) site of vulnerability in eliciting cross-clade neutralizing responses in standard vaccine-test animals. However, the breadth and potency of the elicited responses have been less than optimal. Here, we identify three mutations (3mut), Met302, Leu320, and Pro329, that stabilize the apex of the Env trimer in a prefusion-closed conformation and show antigenically, structurally, and immunogenically that combining 3mut with other approaches (e.g., repair and stabilize and glycine-helix breaking) yields well-behaved clade C-Env trimers capable of boosting the breadth of FP-directed responses. Crystal structures of these trimers confirmed prefusion-closed apexes stabilized by hydrophobic patches contributed by Met302 and Leu320, with Pro329 assuming canonically restricted dihedral angles. We substituted the N-terminal eight residues of FP (FP8, residues 512 to 519) of these trimers with the second most prevalent FP8 sequence (FP8v2, AVGLGAVF) and observed a 3mut-stabilized consensus clade C-Env trimer with FP8v2 to boost the breadth elicited in guinea pigs of FP-directed responses induced by immunogens containing the most prevalent FP8 sequence (FP8v1, AVGIGAVF). Overall, 3mut can stabilize the Env trimer apex, and the resultant apex-stabilized Env trimers can be used to expand the neutralization breadth elicited against the FP site of vulnerability.IMPORTANCE A major hurdle to the development of an effective HIV-1 vaccine is the elicitation of serum responses capable of neutralizing circulating strains of HIV, which are extraordinarily diverse in sequence and often highly neutralization resistant. Recently, we showed how sera with 20 to 30% neutralization breadth could, nevertheless, be elicited in standard vaccine test animals by priming with the most prevalent N-terminal 8 residues of the HIV-1 fusion peptide (FP8), followed by boosting with a stabilized BG505-envelope (Env) trimer. Here, we show that subsequent boosting with a 3mut-apex-stabilized consensus C-Env trimer, modified to have the second most prevalent FP8 sequence, elicits higher neutralization breadth than that induced by continued boosting with the stabilized BG505-Env trimer. With increased neutralizing breadth elicited by boosting with a heterologous trimer containing the second most prevalent FP8 sequence, the fusion peptide-directed immune-focusing approach moves a step closer toward realizing an effective HIV-1 vaccine regimen.


Subject(s)
AIDS Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Female , Guinea Pigs , HEK293 Cells , HIV Antibodies/immunology , HIV Seropositivity , HIV-1/immunology , Humans , Immunization, Secondary , Peptides , Vaccines, Subunit
11.
Sci Rep ; 10(1): 3032, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080235

ABSTRACT

The vaccine elicitation of broadly neutralizing antibodies against HIV-1 is a long-sought goal. We previously reported the amino-terminal eight residues of the HIV-1-fusion peptide (FP8) - when conjugated to the carrier protein, keyhole limpet hemocyanin (KLH) - to be capable of inducing broadly neutralizing responses against HIV-1 in animal models. However, KLH is a multi-subunit particle derived from a natural source, and its manufacture as a clinical product remains a challenge. Here we report the preclinical development of recombinant tetanus toxoid heavy chain fragment (rTTHC) linked to FP8 (FP8-rTTHC) as a suitable FP-conjugate vaccine immunogen. We assessed 16 conjugates, made by coupling the 4 most prevalent FP8 sequences with 4 carrier proteins: the aforementioned KLH and rTTHC; the H. influenzae protein D (HiD); and the cross-reactive material from diphtheria toxin (CRM197). While each of the 16 FP8-carrier conjugates could elicit HIV-1-neutralizing responses, rTTHC conjugates induced higher FP-directed responses overall. A Sulfo-SIAB linker yielded superior results over an SM(PEG)2 linker but combinations of carriers, conjugation ratio of peptide to carrier, or choice of adjuvant (Adjuplex or Alum) did not significantly impact elicited FP-directed neutralizing responses in mice. Overall, SIAB-linked FP8-rTTHC appears to be a promising vaccine candidate for advancing to clinical assessment.


Subject(s)
AIDS Vaccines/immunology , HIV-1/immunology , Peptides/immunology , Recombinant Fusion Proteins/immunology , Adjuvants, Immunologic , Amino Acid Sequence , Animals , Cross Reactions/immunology , Female , Immunization , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Peptides/chemistry
12.
Cell ; 178(3): 567-584.e19, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348886

ABSTRACT

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Peptides/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/classification , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Crystallography, X-Ray , Female , HEK293 Cells , HIV Antibodies/chemistry , HIV Antibodies/classification , HIV-1/metabolism , Humans , Macaca mulatta , Male , Peptides/chemistry , Protein Structure, Tertiary , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
13.
PLoS One ; 14(4): e0215163, 2019.
Article in English | MEDLINE | ID: mdl-30995238

ABSTRACT

The vaccine elicitation of broadly neutralizing responses is a central goal of HIV research. Recently, we elicited cross-clade neutralizing responses against the N terminus of the fusion peptide (FP), a critical component of the HIV-entry machinery. While the consistency of the elicited cross-clade neutralizing responses was good in mice, it was poor in guinea pigs: after seven immunizations comprising either envelope (Env) trimer or FP coupled to a carrier, serum from only one of five animals could neutralize a majority of a cross-clade panel of 19 wild-type strains. Such a low response rate-only 20%-made increasing consistency an imperative. Here, we show that additional Env-trimer immunizations could boost broad FP-directed neutralizing responses in a majority of immunized animals. The first boost involved a heterologous Env trimer developed from the transmitted founder clade C strain of donor CH505, and the second boost involved a cocktail that combined the CH505 trimer with a trimer from the BG505 strain. After boosting, sera from three of five animals neutralized a majority of the 19-strain panel and serum from a fourth animal neutralized 8 strains. We demonstrate that cross-reactive serum neutralization targeted the FP by blocking neutralization with soluble fusion peptide. The FP competition revealed two categories of elicited responses: an autologous response to the BG505 strain of high potency (~10,000 ID50), which was not competed by soluble FP, and a heterologous response of lower potency, which was competed by soluble FP. While the autologous response could increase rapidly in response to Env-trimer boost, the heterologous neutralizing response increased more slowly. Overall, repetitive Env-trimer immunizations appeared to boost low titer FP-carrier primed responses to detectable levels, yielding cross-clade neutralization. The consistent trimer-boosted neutralizing responses described here add to accumulating evidence for the vaccine utility of the FP site of HIV vulnerability.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Immunization, Secondary , Peptides/pharmacokinetics , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/genetics , AIDS Vaccines/pharmacokinetics , Animals , Guinea Pigs , HIV Infections/prevention & control , HIV-1/genetics , Peptides/genetics , Peptides/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...